Biohazardous Waste Disposal

Presented by:

Biosafety (HSEWB) & The Faculty of Science and Engineering

Training Material Available on the OHS website: http://www.yorku.ca/dohs/prog-biosafety.html

Objectives

 To ensure consistency of proper biohazardous waste disposal for each lab

- Topics:
 - Definitions & Background
 - Regulated Biomedical Waste Disposal
 - Biohazardous Waste Treatment and Disposal: Microbiological Waste

 YC

redefine THE POSSIBLE.

Biohazardous Waste Disposal

Definitions & Background

Waste Control Laws

Ministry of Environment, Ontario Government:

- Environmental Protection Act
 - O. Regulation 347, Waste Management
 - Guideline C-4: Biomedical Waste Management
 - Guideline C-17: Non-Incineration Technologies

City of Toronto:

- Sewer By-law
- Littering and Dumping of Refuse

Fines and Jail Time If Not Compliant

What is Biohazardous Waste?

- Waste that may contain or have been contaminated with infectious agents
- The government refers to Biohazardous Waste as "Biomedical Waste" and specifically defines what it is
- Ministry of Environment enforces regulation (O. Reg 347, C4 Guidelines)

What is Biomedical Waste?

From the C4 Guidelines:

- Microbiological Waste ----->
- Human anatomical waste
- Human blood waste
- Animal anatomical waste
- Animal blood waste
- Sharps Waste
- Cytotoxic Waste
- Waste in contact with human blood waste that is infected or suspected of being infected with any infectious substance (human), or
- Waste containing or derived from one or more wastes described above

only stream we can 'treat' at York

"Regulated waste" that must be shipped out

Biohazardous Waste Disposal

Regulated Biohazardous Waste: Biomedical

Will My Biohazardous Waste Be Shipped Out?

No

Yes

Solid waste: e.g. used lab disposables such as petri plates, contaminated glassware, gloves, paper towels, pipette tips, microcentrifuge tubes, etc.

Liquid Waste: e.g. inoculated broth/culture, cell culture waste, etc.

Can Treat Using Lab Protocols

- Disinfection
- Autoclaving

Regulated Biomedical Waste: e.g. Needle tips/ razors, blood vials, animal carcasses, human or animal anatomical waste and blood, human or animal blood contaminated disposables, animals in formalin, etc.

Prepare Waste For Shipping

• Biomedical Waste properly recorded, packaged, & stored

- ONLY use approved waste boxes
 - All supplies available at Farquharson Science Stores
 - Double line the box with a yellow biohazard bag
 - Tape box bottom with strapping tape
 - Label box with Lab PI, Date, and Contact # with permanent marker
 - Place appropriate sticker on box
 - Once the box is full:
 - Use twist-ties to seal the yellow biohazard bag
 - Use strapping tape to seal box at least 2" down sides
 - Place box in the science store fridge or Vivaria Freezer
 - LSB Researchers: Contact Brad Sheeller for pick-up: 647.999.9806
 - Do not overfill box (14kg max)

Place Anatomical Waste sticker on box if needed:

Sharps

- razor blades, needles, scalpels...and any sharp objects contaminated with biohazardous waste
- Discard syringes immediately into a sharps container
 - No need to detach needle from plastic tube
 - Do not bend, shear, recap the needle

Sharps

- Label the container with the lab Pl, a lab phone number, and date. Use a permanent marker.
- When a sharps container filled to the line, close the container and safely transport it to Farquharson Science Stores. **Do not** over fill past the line.
- Place inside lined waste box (labelling rules apply)
- LSB Researchers: Contact Brad Sheeller to pick-up when full

Biohazardous Waste Disposal

Biohazardous Waste Treatment & Disposal: Microbiological Waste

What is Microbiological Waste?

From the C4 Guidelines:

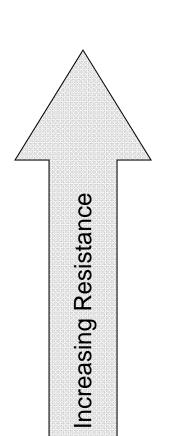
- Human or animal cultures
- Stocks or specimens of microorganisms
- Human diagnostic specimens (excluding urine, feces)
- Disposable laboratory material that has come into contact with one or more of the items listed above
- Only waste stream that York U can treat by:
 - 1. Chemical Disinfection
 - Physical Disinfection (Autoclaving)

Storage: Microbiological Waste

- ALWAYS LABEL WASTE CONTAINERS
 - Custodians may pick up waste if not labeled
 - Emergency Response Personnel need to know
 - Clear waste bags should NOT be outside of a labeled container if unautoclaved

Disinfection: Definitions 101

- Sterilization: Destroy/eliminate all microbes with the intent to protect against recontamination
- **Disinfect:** Destroy/eliminate **all** non-spore forming microbes
- **Decontamination:** Disinfection/sterlization of contaminated articles
- Antiseptic: Prevent/stop the growth & action of microbes
- Sanitize: Reduce the number of microbes to a safe level
- -Cide: destorys/eliminates (bactericide, fungicide, etc)
- -Static: prohibit growth but may not kill (Bacteriostatic, etc)


Disinfection: Why Disinfect & Sterlize?

- Minimize risk of contamination
 - Prepares media and reagents for experiments
 - Prevents unwanted microbial growth (e.g. cell cultures, agar plates)

- Minimize risk of exposure in the lab
 - Routine surface decontamination
 - Treatment of biohazardous waste
 - Immediate spill cleanup

Disinfection: Disinfectant Resistance

- -Prions
- -Bacterial spores
- -Coccidia (Cryptosporidium mycobacterium)
- -Nonlipid viruses (hepatitis A, polio)
- -Fungi
- -Rickettsiae, Chlamydiae
- -Vegetative bacteria
- -Lipid-containing viruses (e.g. HIV)

Disinfection: Disinfectant Considerations

- Surface topography: rough surfaces harder to clean
- **Temperature:** high temps may inactivate disinfectant
- Organic load: higher load requires higher disinfectant concentration
- Concentration: low concentrations may not disinfect, too high concentration may be hazardous
- Contact time: short contact times may not disinfect

Disinfection: Types of Disinfection

- Chemical Disinfection
 - 6 classes
- Physical Disinfection
 - Thermal (autoclave, incineration)
 - Filtration (water treatment)
 - Irradiation (UV, gamma radiation)

Disinfection: Chemical Disinfectants Classes

- Halogens (e.g. Chlorine, Iodine)
- Alcohol
- Phenolics
- Quaternary ammonium compounds (e.g. lysol)
- Aldehydes (e.g. glutaraldehyde, formaldehyde)
- Hydrogen peroxide

Disinfection: Common Lab Disinfectants

- 5-10% household bleach solution
 - 5% for 1 hour / 10% for 30 mins
 - advantages: very effective, affordable
 - disadvantage: easily inactivated by organics, corrosive
 - Must change solution often and make fresh batches

- 70% ethanol (EtOH) solution
 - advantages: very effective, affordable
 - disadvantage: flammable, does not kill spores

Disinfection: Common Usage

Agent	Disinfectant (Examples)
Vegetative bacteria	5% bleach, 70% EtOH, quaternary ammonia, 6% hydrogen peroxide
Mycobacteria and fungi	10% bleach, 70% EtOH, phenolic compounds, 6% hydrogen peroxide
Spore-forming bacteria	10% bleach, glutaraldehyde, formaldehyde, 6% hydrogen peroxide
Enveloped viruses	2% bleach, 70% EtOH, quaternary ammonia, 6% hydrogen peroxide
Non-enveloped viruses	10% bleach, 6% hydrogen peroxide, glutaraldehyde, formaldehyde

Disinfection: Physical Disinfection

- Thermal
 - Steam Sterilization (e.g. autoclave)
 - advantages: nontoxic
 - disadvantages: burn hazard, expensive
 - Incineration
 - disadvantage: not available on-site
- UV radiation
 - advantages: no chemical hazard
 - disadvantages: skin/eye exposure hazard, limited use (effectiveness is questionable)

Autoclave Use

The Hands-on Training Guide

Disinfection: Autoclave

 Pressurized device that uses heat, steam and pressure to achieve sterilization or decontamination

Autoclave Overview

- Typically operated at 121°C, 15psi, for 15-45 minutes.
- Allows the heating of liquids above boiling point.
- Uses moist heat (steam) to increase efficiency of sterilization.
- Heat is used to coagulate proteins, which destroys microorganisms and any potential biohazard.

Autoclave Hazards

- Tremendous pressure from steam in chamber provides explosive potential.
- High temperatures creates potential for burns and scalding.
- Potential exposure to hazardous vapours
- Inadequate decontamination allows for the potential of biological hazards to contaminate personnel and the environment.

redefine тне POSSIBLE.

Autoclave Hazards

What you CAN autoclave?

From the C4 Guidelines:

- Human or animal cultures
- Stocks or specimens of microorganisms
- Human diagnostic specimens (excluding urine, feces)
- Disposable laboratory material that has come into contact with one or more of the items listed above
- Autoclaving is also used for:
- Items for sterilizations such as; glassware media, aqueous solutions

What you CANNOT Autoclave

- DO NOT Autoclave:
 - BIOMEDICAL WASTE (except Microbiological)
 - Including human anatomical or blood waste, animal anatomical or blood waste, cytotoxic waste, or any waste in contact with these waste products (including sharps waste).
 - RADIOACTIVE WASTE
 - HAZARDOUS CHEMICAL WASTE
 - This includes anything contaminated with a toxic, volatile, corrosive, or mutagenic chemical
 - (e.g.) bleach, formalin, glutaraldehyde, ethidium bromide
 - Check MSDS beforehand

Autoclaves at York

■ Lumbers Room 120A

■ Farquharson 227A

■ 3rd Floor Life Sciences Building

Steps to Autoclaving

- Preparing your items for autoclaving
- Loading the autoclave
- Choosing the cycle settings
- Unloading the autoclave
- Aborting Autoclave

Autoclaving: Preparing your items

- Sign into log book
 - Keeps track of autoclave use for maintenance records

- Use personal protective equipment!
 - Eye protection
 - Heat resistant gloves
 - Lab coat

Autoclaving: Preparing your items

- Use a primary container
 - Container comes into direct contact with the contaminated or non-sterilized material or fluid
 - Do not fill more than 2/3 of holding capacity
 - Must NOT be a tightly sealed container (might explode)
 - MUST allow steam penetration

Autoclaving: Preparing your items

- Use a primary container MUST allow steam penetration
 - Bottles:
 - Loosen screw caps or use self venting caps
 - Cap open containers with aluminum foil or muslin

Loosen screw caps

- Use a primary container MUST allow steam penetration
 - For waste bags:
 - Do not pack or compress contents, do not knot or seal the bag
 - Label with Date, Lab PI, Lab Phone extension
 - Use a chemical integrator
 - Do not knot or seal bag: can fold excess over but keep open

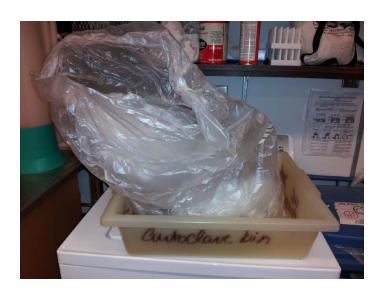
Chemical Integrators

- The steam sterilization process is the function of three basic parameters: time, temperature and steam penetration
- Chemical Integrators are a good way of testing these parameters
 - Black band must be within the 'Accept' area
 - If the black band does not reach the 'Accept' area, re-autoclave the load:
 - Increase the sterilization temperature, time, or steam penetration

Non-autoclaved

Accept (throw in bin)

Reject (re-autoclave)



- Place the Chemical Integrator (CI) centrally within the waste bag
- Use the extenders to place the CI:
 - It avoids direct contact with waste
 - Attach the CI to one end of the extender. The extender can be autoclaved
- Note: Not every bag of waste per load must receive a CI.
 - Place CI in the bag which occupies the most challenged position in the load.

- Use a secondary container
 - Used to contain any spills
 - The sides of the secondary container must be sufficiently high to contain any spill that may occur
 - Tray MUST be autoclave safe

- Use temperature sensitive tape
 - Will indicate that high temperature has been achieved
 - Will not prove that decontamination or sterilization was successful
 - Will assist in keeping track of autoclave and non autoclaved items

Before

After

Autoclaving: Loading the autoclave

- Be cautious if autoclave was recently used
 - Loading rack may be hot
 - Use heat protective gloves
- Make sure loading rack is locked on cart
 - Rack may slide out unexpectedly if not locked

Autoclaving: Loading the autoclave

Farquharson:

- Tighten door so that prongs are fully extended
- If noise and/or steam escapes, abort the cycle and tighten the door more

Lumbers

 Keep the door button pushed until the ready prompt is on the screen

Autoclaving: Which cycle to use

- Autoclaves run 3 types of cycle programs
- The type of cycle depends on what is being autoclaved:

Liquid/Slow exhaust	* For autoclaving liquids * Prevents liquids from boiling over
Solid/Gravity	* Best for wet waste
Solid/Vacuum	* Best for dry waste

- Notes
 - When in doubt, use Solid/Gravity for waste
 - Do not autoclave liquids with a solid load

Autoclaving: Choosing a Cycle

- For Liquids:
 - 20 mins / litre of liquid, 5 mins per additional litre
- For Solids:
 - Glassware (empty): 20 mins
 - Instruments (utensils): ~30 mins
 - Biohazardous Garbage: at least 60 mins
 - Use biological test strips to optimize duration
 - Can decrease time if biological testing proves effective
 - Using a pre-vac cycle can assist in steam penetration (LSB autoclaves use these cycles)

Autoclaving: Unloading autoclave

- Use PPE
- Wait for autoclave to state END CYCLE before opening door
- When opening, stand away from door opening
 - Make sure no one is standing by door opening
- Farquharson: turn door knob slowly and open door slightly to allow steam to escape
- Lumbers: make sure your hands are not above the top vents

redefine THE POSSIBLE.

How to Autoclave – Unloading autoclave

- Make sure rack is locked on to cart
- Analyze chemical integrator (if failed, redo sterilization) and note results in log book
- Please put back heat resistant gloves for other users
- Keep autoclave doors shut when not in use

Waste Disposal: Treated Waste

- Unmark any biohazard signs and words that may be seen on waste bags!
- City waste collectors have complained and refused to pick up our waste in past

Note: It is best to use clear autoclave bags

Waste Disposal: Treated Waste

Autoclaved bags to be put into the red bins outside the autoclave room

Unmark all biohazardous symbols

Always label waste bags (Date, Lab Pl and contact #)

Do not over fill red bins

How to Autoclave – Aborting

- Only qualified personnel should attempt to troubleshoot an autoclave
- Farquharson
 - Large autoclave: push abort button
 - Small autoclave: (note do not use for waste!) need to manually advance through the autoclave cycle
- Lumbers
 - Push abort button
- <u>Life Science Building</u>
 - Push off button

Autoclave: Performance Indicators

■ How to know if autoclave is functioning correctly:

Physical	- Annual testing by certified technician - Pressure, Temperature, Cycle times, recorded on paper
Chemical	- Heat sensitive autoclave tape - Not an indicator of successful sterilization, useful to keep track of autoclaved and unautoclaved items
Biological	- Tests ability of autoclave to sterilize effectively - Bacillus stearothermophilus spore strips often used because they are resistant to steam sterilization. - EZ Test (SGM Biotech) (Fisher Sci #29801 074) - 3M Attest Rapid Readout Biological Indicators - Steris Verify Integrator Laminated and EO Integrators

Autoclave Issues/Concerns?

Contact:

Your Supervisor

Farquharson and Lumbers:

- Brad Sheeller, 647.999.9806, FSE
- Maria Mazzurco, Bioogy, Lumbers 106, ext. 22657
- Debbie Freele, Biology, Lumbers 115, ext. 22655

LSB

- Lab/Investigator in charge of autoclave at the time
- Brad Sheeller, 647.999.9806, FSE

General Inquiries: York Biosafety Officer:

Jay Majithia, HSEWB, ext. 44745

Disposal: Mixed Waste

Chemical

Radiological

Biological

- Try to keep waste streams separate as much as possible
- Limit experiments that create mixed waste streams, where possible.
- Contact DOHS if unsure how to handle any waste stream.

Treat according to radiation waste protocol, then as biohazard.

+

Chemically disinfect biological waste first. If biological material cannot survive or is not infectious, treat as chemical waste.

Treat in order (radiation, biological, chemical). Contact DOHS for assistance

End

Thank you, Please remember to keep record of your training in the lab group's safety binder

Training Content maintained by Health, Safety and Employee Well-Being

http://www.yorku.ca/dohs/prog-biosafety.html

Inquiries -

Telephone: 416-736-2100 ext. 44745

Email: jmajithi@yorku.ca

